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Introductionl

The impact of hydrometeor shape on microwave radiation in the atmosphere is well
known in radiative transter theory. Validation attempts for radiative transter models
by means of ground based observations give promising conformance regarding the
effects of oblate hydrometeors (Czekala et al. 2001).

[dentifying the impact of hydrometeors (and their shape) on the satellite observed
signals is more difficult, but possible in certain situations. By using TRMM level-1
data we show that the polarization difference (PD) will have a dynamic range in the
order of 20 K at 85 GHz due to effects of precipitation particle shape. Positive PD
of up to +12 K is associated with straiform precipitation, negative PD down to —12
K can occur over isolated convective storm cells.

Data Processingl

In order to focus on specific precipitation events we use the data from the TRMM
satellite. Due to its low orbit altitude TRMM is offering high resolution microwave
observation (TMI) together with visible/infrared (VIRS), precipitation radar (PR),
and lightning observations (LIS).

The high-resolution pixel-level products have different scan patterns and resolutions.

In order to use the data for comparisons and statistical analysis, we match the
high-resolution VIS/IR data and the low-resolution TMI data on the intermediate

resolution of the radar grid.

Data used for the matched product:

e 1B01 Level-1 VIRS (Visible/IR data)
e 1B11 Level-1 TMI (Microwave Imager)

e 1C21 Level-1 Radar reflectivity profile

o 2A12, 2A23. 2A25, 2B31 Level-2
(analyzed products at pixel level)

e LIS lightning rates, lightning activity
e NCEP surface temperature

e analysis of melting layer, homgeneity

TRMM Footprints (VIRS, PR, TMI at 37 GHz)
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Figure 1: Scan pattern of the three main
TRMM instruments in the center of the sub-

satellite track.
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Orbit 542, Scan 650, Cross-Section at Scan 72/Pixel 8
(Data: interpolated TMI, sampled VIRS, TB is TB_v, Scan Range normal)
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Figure 2: Sample of the most important va-
riables (level-1) in matched product. Cross-track
and along-track coordinates are chosen for brow-

sing the orbit.
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From the precipitation radar we can analyse the existence and strength of the melting
layer. This kind of classification with a different instrument than the TMI allows for
an independent analysis of the TMI data since we do not need to characterize the
stratiform or convective nature from the TMI data itself.
Important feature: In the presence of a melting layer the polarization difference at
85 GHz (PDygs) is always positive and larger then than PDs;. Only oblate particles
can explain the observed magnitudes of PDgs.

Orbit 655, Scan 640, Cross-Section at Scan 50/Pixel 28
Radar Reflectivity Profile
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| Convective storms.

Isolated precipitation towers of convective rain storms sometimes show a very in-
teresting signature in the microwave signature at 85 GHz: negative polarization
differences occur (Prabhakara et al. 2001). Radiative transfer calculations suggest
prolate ice particles as a reason for this signal (Czekala 1998).

TMI Brightness Temperature

300
250 [t

TB/K

100

50t
0 100

PD /K

2000 [

150 "

2000 300 400
Along Track Distance / km

TMI Polarization Differences

0 100
Along Track Distance / km

200 300 400

Height / km

Radar Reflectivity Profile

0 100 200 300 400
AIong Track Distance / km

0 10 20 30 40
Reflectivity Factor / dBZ

Reflectivity Analysis

= o
o Ul
T T T T T I T

o1

0 100

200
Along Track Distance / km

300 400

Figure 3: Stratiform preci-
pitation over ocean. The X-
axis gives the along track di-
stance. Brightness tempera-

ture (TB), polarization dif-

i ference (PD), radar reflecti-

vity, and melting layer ana-
lysis are shown (thick line:

melting layer, medium line:
25 dBZ contour, thin line: 18
dBZ contour). TB and PD

. are given for 85 GHz (thick
: solid), 37 GHz (thin solid),
| 19 GHz (thick dashed), and
| 10 GHz (thin dashed).

At 85 GHz surface polariza-

| tion is blocked, so the obser-
ved PD is caused by the hy-

drometeors itself.

Figure 4: Convective pre-
cipitation over ocean. Isola-
ted storms (less or equal to
one pixel at 85 GHz) exhibit
—5 to sometimes —12 K PD.
This feature sometimes is as-
sociated with strong light-
ning activity, but not always.
The most severe brightness
temperature depressions do
not show the strongest nega-
tive PD signature (see Fig.
2). Other microphysical ef-
fects (electric fields) might be
involved. Over land this si-
enature of less than —5 K
occurs approximately 6 to 7
times more often than over

oceall.
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Czekala 1998:
Effects of ice particle shape and orientation on polarized microwave radiation for
off-nadir problems, Geophysical Research Letters, 25 (10), 1669-1672, 1998.

Czekala et al. 2001:
Interpretation of polarization features in ground-based microwave observations as

Polarization Difference (TBv-TBh) / K

Polarization Difference (TBv-TBh) / K

Polarization Difference / K

Polarization Difference / K

60

40

20

r=-0.95

o0]
o

19GHZPDVSTB  smiZ3E

160 180 200 220 240 260 280
Brightness Temperature / K

r=-0.55
Slope =-0.09

50

40 ¢

85GHzPDvsTB

Brightness Temperature / K

r=-0.74

19 GHz PDvs TB Slope = -1.61

80

15 20 25 30 35 40 45

OF "1~ 1T T T

Aerea 2 Maximum Reflectivity / dBZ

85 GHz PDvs TB

r=0.52
Slope = 0.27

40

15 20 25 30 35 40 45

Aerea 2 Maximum Reflectivity / dBZ

References.

Figure 5: PD-TB scatter

| diagrams for data examp-
| les from January 1998. Con-

tourlines with logarithmic

| spacing indicate the point

density within the scatter-

1 plot, the color gives the per-

centage of points with an

1 analysed melting layer (pre-

sent if clear bright band
structure of 25 dBZ or mo-
re exists, with restrictions to

| horizontal homegeneity).

At 85 GHz the stratiform
. precipitation exhibits a cle-
. ar trend to positive PD with
| increasing optical thickness

(e.g. decreasing TB).

1 Figure 6: PD-Z scatter
| diagrams for data examp-
1 les from January 1998. Point
| density and relative ocur-
| rence of melting layer /bright
| band is indicated by con-
| tour lines and color scheme,
| respectively. The reflectivi-
|ty shown is an area average

of 3 by 3 radar pixels with
the maximum reflectivity in

1 each profile used for the ave-
| raging.

. With increasing rain rate
- and increasing reflectivity
| the PD is also increasing at
| 85 GHz. This clearly indica-
| tes a hydrometeor effect rat-
i her than a surface effect.
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