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Abstract. We have developed a tunable temperature profiler based on a highly stable synthe-
sizer that can observe at multiple frequencies on the shoulder of the 60 GHz atmospheric oxygen
feature. We are developing a similar radiometer to obtain the vertical distribution of water vapor
by making observations on the pressure broadened water vapor line from 22 to 29 GHz. Informa-
tion on cloud liquid water profiles is also contained in these two wavebands. Various mathemati-
cal retrieval methods for temperature, water vapor, and cloud liquid water profiles were tested
based on these radiometer designs. These include neural networking, Newtonian iteration of sta-
tistically retrieved profiles, and Bayesian “most probable” retrievals. Based on realistic rad
ter errors and performance, very good retrieval capability is demonstrated. The performa
the various retrieval methods are presented and compared. Examples of profile retrievals 
presented. Data were not binned into seasons to reduce computer time; better retrieval re
all methods would be expected with binning.

1. Motivation for Radiometric Atmospheric Profiling

Radiosonde observations (RAOBs) are the fundamental method for atmospheric tempe
wind, and water vapor profiling, in spite of their inaccuracies, cost, sparse temporal sampli
logistical difficulties. A better technology has been sought for decades, but until now, no ac
continuous all weather technology has been demonstrated. Laser radars (LIDARS) and 
transform infrared spectrometers can profile temperature and water vapor, but not in the p
of cloud. Our highly stable frequency agile radiometric temperature and water vapor pro
give continuous unattended profile measurements. They also have the capability to profile
liquid water, a capability absent in RAOBs and all other systems except for in situ aircraft
devices. Applications for this passive radiometric profiling include: weather forecasting and
casting; detection of aircraft icing and other aviation related meteorological hazards; dete
tion of density profiles for artillery trajectory and sound propagation; refractivity profiles
radio ducting prediction; corrections to radio astronomy; satellite positioning and Global 
tioning System (GPS) measurements; atmospheric radiation flux studies; estimation and 
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 origi-
 deeper
rtional
feature
tion of telecommunication link degradation; measurement of water vapor densities as they affect
hygroscopic aerosols and smokes.

2. Microwave Profiling Methods

The microwave profiling methods discussed here make use of atmospheric radiation measure-
ments in the 20 to 75 GHz region. The zenith path atmospheric absorption spectrum at sea level 

for a typical mid latitude atmosphere with a 1 km thick, 0.5 g/m3 cloud in this frequency band is 
shown in Figure 1. The feature at 22.2 GHz is a water vapor resonance that is pressure broadened 
according to the pressure altitude of the water vapor distribution, while the feature at 60 GHz is an 
atmospheric oxygen resonance. The liquid water spectrum increases approximately with the sec-
ond power of frequency in this region.

Figure 1.  Contributions to atmospheric absorption by oxygen, water vapor, and cloud liquid
water droplets. Radiometer tuning ranges are shown by the broadened traces. Absorption at two
altitudes is shown to demonstrate pressure broadening.

Temperature profiles can be obtained by measuring the spectrum of radiation intensity,
“brightness” spectrum, at points along the side of the oxygen feature at 60 GHz [Westwater,
1965]. By scanning outward from line center, where the opacity is so great that all signal
nates from just above the antenna, onto the wing of the line, where the radiometer “sees”
into the atmosphere, one can obtain altitude information. Emission at any altitude is propo
to local temperature; thus the temperature profile can be retrieved. Either shoulder of this 
is suitable for retrieval of temperature profile information. 
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Water vapor profiles can be obtained by observing the intensity and shape of emission from
pressure broadened water vapor lines. The water vapor line at 183 GHz is used for vapor profiling
from satellites. The high opacity of this line hides the unknown emission emanating from the
earth’s surface, eliminating this error source but precluding profiling to low altitudes. The li
22 GHz is too transparent for effective profiling from satellites but is suitable for ground b
profiling. In this feature, the emission from water vapor is in a narrow line at high altitudes a
pressure broadened at low altitudes. The intensity of emission is proportional to vapor d
Scanning the spectral profile and mathematically inverting the observed data can therefo
vide water vapor profiles.

Cloud liquid water profiles can be obtained by measuring the contribution of cloud l
water to atmospheric spectral features of varying opacity. For instance, as described abo
atmospheric temperature profile can be obtained by scanning either side of the 60 GHz 
feature. Scanning from the line center outward onto either of the wings of the feature mov
observation deeper into the atmosphere, yielding altitude information on atmospheric tem
ture. Cloud liquid water, if present, contributes more to the 60 to 75 GHz high frequency s
this feature than to the 45 to 60 GHz low frequency side, thereby skewing the line shape. 
fore, scanning both sides of the line yields information on the temperature and cloud liqui
files. There is also cloud liquid profile information in the combined 22 to 29 GHz and 52 
GHz tuning bands. 

3. Determination of Radiometer Frequencies with Maximum Information Content

As a first step in our analysis, the weighting functions defined by Schroeder and Westwater
[1991] were numerically calculated for each 1992 Norman, Oklahoma, radiosonde using N
Environmental Technology Laboratory (ETL) weighting function software. Radiosonde data
separated into clear and cloudy sets. Weighting functions were calculated at 200 MHz in
within the 20 to 29 (K-band) and 52 to 59 (V-band) GHz tuning wavebands and at 90, 3
14.5 degree elevation angles. This site was chosen because of its wide range of water vapo
and profile structures. Although optimum frequency ensembles are expected to differ for dif
climatologies, we expect these differences to be slight. 

The weighting function describes the change in signal at the radiometer antenna as a f
of change in the vapor density profile:

 (1)

where ρυ is the density of water vapor in g/m3, τ(s,s′) is the opacity along a ray path from s to ′,
α is absorption in nepers, T(s) is the physical temperature in K at coordinate s, and Tb0 is the cos-
mic background temperature in K.

The next step is to determine the frequency ensemble that contains the maximum amount 
pendent information for retrieving the desired profile. Frequency selection was undertaken f
following purposes; (1) water vapor profiling using both the K and V bands, (2) temperature
filing using the V band only and using both the K and V bands, (3) cloud liquid water profilin
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using the K band only and using both the K and V bands, (4) cloud liquid profiling using both 
sides of the 60 GHz oxygen feature, and (5) and cloud liquid profiling using both sides of the 60 
GHz oxygen feature and the K band. 

Figure 2. Water vapor eigenvalues calculated from RAOBS during clear conditions. The 22 to 29
GHz range is shown, and 22.235 GHz was pre-selected.

The frequency ranking was accomplished by pre-selecting the 22.235 GHz frequency since it con-
tains the highest sensitivity to altitude. Each step of the algorithm involves adding a candidate fre-
quency to the current frequency complement, forming the covariance matrix of the weighting 
functions and calculating its eigenvalues. If we consider the weighting functions at various alti-
tudes to be components of a vector, then element cij of the covariance matrix is the inner (dot) 
product of wi and wj, where wi is the weighting function at frequency i. The eigenvalues of this 
covariance matrix contain information on the relative independence of the weighting functions. 
The additional eigenvalue that results from adding each remaining frequency to the current fre-
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quency complement was summed by frequency for all radiosondes, and the frequency with the 
largest sum was included as the next most significant frequency in the frequency complement. 
Where the eigenfrequencies ranged across frequencies for the various soundings, a visual deter-
mination was made. The process was repeated to rank all of the frequencies. No additional infor-
mation is obtained for the profile retrieval below a cut off that depends on radiometer brightness 
temperature accuracy.

Examples of scatter plots of water vapor eigenvalues are shown in Figure 2. Each cross repre-
sents an eigenvalue corresponding to the frequency being added to the frequency complement for
one sounding. The eigenvalue corresponding to the pre-selected frequency is not shown. As more
frequencies are selected, the chosen frequencies become less clustered. This is due to two factors;
(1) the higher order eigenvalues represent higher frequency variations in the profiles and different
frequencies will be optimal for detecting features which are localized at specific heights in the
profile, and (2) high order eigenvalues contribute less additional information so it makes less dif-
ference which frequency is selected. 

Table 1: Observation parameters for water vapor profiling as determined by eigenvalue analysis,
ranked by information content. Frequencies for instrument error of 0.5 K are listed above the
break in the data columns. Additional frequencies for 0.2 K error are listed below the break.
Boldface are pre-selected frequencies.

Examples of the frequency and elevation ranking for water vapor profiling are given in Table
1 in order of information content. These rankings should not be taken as absolute but as represen-
tative only, as they are based on Norman soundings and are therefore based on a specific climatol-
ogy. The ranking will differ slightly for different sites. However, ground based weighting
functions for the three atmospheric parameters considered herein are far from unique. Adjacent
frequency and elevation choices are highly correlated and have essentially the same information
content. Therefore, the optimal ensemble for Norman is probably optimal for a wide variance of
climatologies. It should also be noted that there are many possible subsets of a large, highly
dependent set of weighting functions that span the same space equally well. In particular, the
choice of a different pre-selected frequency will result in different frequency complements. The

22 to 29 GHz 
at 14.5o

22 to 29 GHz 
elevation scans

22 to 29 and
48 to 59 GHz 

at zenith

22 to 29 and
52 to 59 GHz 

elevation scans
clear cloud clear cloud clear cloud clear cloud
22.235 22.235 14.5 22.235 14.5 22.235 22.235 22.235 90.0 22.235 90.0 22.235
23.035 23.035 14.5 23.035 14.5 23.035 23.035 23.035 14.5 23.835 14.5 23.635
22.435 22.035 14.5 22.435 14.5 22.035 22.435 22.435 30.0 22.635 30.0 22.635
26.235 27.035 14.5 26.235 14.5 27.035 48.220 48.220 14.5 29.235 14.5 29.235
23.835 23.835 14.5 23.835 14.5 23.835 24.035 24.035 30.0 22.035 30.0 22.035

22.635 22.635 14.5 22.635 30.0 22.635 53.330 52.850 90.0 52.850 90.0 51.760
52.850 52.280 30.0 51.760 90.0 52.280
52.280 51.760 90.0 52.280 90.0 52.850
51.760 53.330 90.0 53.330 90.0 53.330
51.250 51.250 14.5 23.235 14.5 24.635
50.730 50.300 90.0 53.850 90.0 53.850
50.300 50.730
49.780 53.850
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number of eigenvalues for a given cutoff will remain the same although marginal eigenvalues
may drift slightly above and below the cutoff. Also, the choice of frequencies whose weighting
functions are near zero will cause the frequency selection algorithm to produce unpredictable
results. 

4. Additional Profile Information 

4.1. Ancillary Information on Cloud Base Altitude and Temperature

As demonstrated by Han and Westwater [1995], knowing cloud base altitude and temperature
is a very strong constraint in retrieval of water vapor profiles. This is also a strong constraint in
cloud liquid profile retrieval. Such constraints greatly improve profiles beyond levels indicated by
the eigenvalues.

Cloud base temperature information can be obtained from a passive infrared pyrometer. Cloud
base height can be obtained from a ceilometer. Knowing the temperature profile allows either
hardware method to determine both cloud base temperature and altitude. It is therefore desirable
to include one of these sensors with the radiometric instrument. The cloud base temperature is
important for liquid profiling, and the infrared pyrometer would probably give a better measure of
this temperature than determining it from a ceilometer and retrieved temperature profile. Use of
pyrometer data was assumed in this study.

4.2. Radiosonde Statistics

All of the retrieval methods tested incorporated statistical information on the behavior of the
three profile types that was obtained from a history of RAOBs. Although the eigenvalue analysis
determines the number of independent measurements obtained from the radiometric spectral
information, the ability to retrieve and resolve profiles by these methods is greatly enhanced by
the statistical information from RAOBs.

5. Description of the Various Retrieval Methods

5.1. Newtonian Iteration Retrieval Method

Two methods developed at NOAA ETL were applied to retrieval of profiles and associated
parameters from brightness temperature and in situ surface measurements. The first is described
in this section and follows the methods described in Han and Westwater [1995]. The second
method is described in the following section. For both methods, the simulated measurements
included surface temperature, water vapor, pressure, and cloud base height as well as 12 zenith
brightness temperatures. From these measurements, the following quantities were retrieved: water
vapor profile, temperature profile, and integrated liquid. From the water vapor and temperature
profiles, various integrated quantities can also be derived. Such quantities could include layer
averaged water vapor, precipitable water vapor, geopotential height, and cloud thickness.

The relationship between the measurements, represented by the m-dimensional measurement
vector y, and the quantities to be retrieved, represented by the n-dimensional profile vector x, may
be expressed as
6
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which is, in general, nonlinear. This expression may be viewed as a mapping of a profile vector in
the n-dimensional profile space into the m-dimensional measurement space. The retrieval process
solves the above equation and derives the profile x from the measurement y. It is important to note
that in the problem encountered here, for a given measurements vector y, there are an infinite
number of profile vectors that satisfy the above expression. Thus, a unique solution does not exist.
Additional information about x is required to constrain the solution. One such information source
is a statistical ensemble of a large number of historic radiosonde profiles. A technique that incor-

porates such a statistical constraint is the Newtonian iteration inversion method. The (k+1)th itera-
tion solution can be expressed as:

 (3)

where k = 0, 1, 2,…, xk is the kth solution, y is the measurement vector with an error covarian
matrix Se. Kk is calculated as:

 (4)

and contains weighting functions evaluated at the kth estimate xk of x, and yk = F(xk). The statis-
tical constraint is represented by xs, and Sk is the mean and covariance matrix of the statisti
ensemble. Implementation of this method is the following.

The profile vector has 99 elements. The first 49 elements are water vapor density at the
zi = i⋅0.25 km, where i = 0 to 48. The next 49 elements represent the temperature profile 
the same vertical coordinates and the last element is the integrated liquid. The measurem
tor has 14 elements including surface temperature and vapor density, and elements at ea
12 specified frequencies.

The weighting functions associated with the brightness temperatures were calculated a
cally using a NOAA ETL routine [Schroeder and Westwater, 1991 and 1992]. The weighting
function associated with the integrated liquid is calculated using a perturbation method. In
lating the weighting functions, the integrated liquid is distributed moist adiabatically from
cloud base, that ithe liquid water is condensate from a saturated parcel being lofted adiaba

The statistical information may be used more efficiently by the classification of the stati
ensemble according to the cloud base heights, which can be identified from the relative hu
profiles. The statistical ensemble is divided into several sub-ensembles, each of which c
only the radiosonde profiles having the same cloud base height. For each sub-ensemble, xs and Sx
are calculated.

The retrieval process starts with the calculation of the initial profile xo. By using a regression
method, the profile portion of the initial estimate xo of x is obtained from surface water vapor an
temperature measurements and the integrated liquid portion is obtained from the two brig

xk 1+ xs SkKk
T KkSkKk

T Se+( ) 1– y yk– Kk xs xk–( )–[ ]+=

Kk F x∂( )⁄∂ x xk==
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temperatures at 23.835 and 29.235 GHz. The next step is to identify a set of {xs, Sx}k by the cloud
base height measurement. Then the iteration starts. For this experiment, the iteration is terminated
at k=2.

5.2. Regression Retrieval Method

This method uses the traditional linear statistical inversion method summarized by Westwater
[1993] and Rodgers [1976]. The independent vector y contains the 12 brightness temperatures,
surface vapor density, and surface temperature. The dependent vector x contains the water vapor
profile, temperature profile, and integrated liquid. The dependent vector is obtained linearly from
the independent vector as:

x = a + by (5)

where a and b are obtained from a statistical ensemble of radiosonde profiles using multivariate
regression methods. 

It is noted that the Newton iteration method explored by Han and Westwater yields slightly
better results than the regression method due to the cloud base height data included in the iteration
method. It is also noted that the cloud base height data utilized in the iteration method improves
integrated liquid retrievals significantly in comparison with the regression method that does not
use the cloud base height data.

5.3. Neural Networking

All neural networks were standard feed forward networks with input, hidden, and output lay-
ers with full connection between adjacent layers. A standard back propagation algorithm was used
for training. Depending on the size of the data set, each RAOB was corrupted by Gaussian noise
one to four times to decrease the sensitivity of the network to noise in the data. The limitation on
data set size was due to available computer memory; the data sets ranged in size from 7,000 to
20,000 soundings. During training, the data were presented in randomized order approximately
5,000 times. For clear RAOBs, there were 39 input nodes: 36 brightness temperatures, surface
temperature, vapor density and pressure, 39 hidden nodes and 47 output nodes representing the
output profile every 0.1 km from 0 to 1 km and every 0.25 km from 1 to 10 km. 

For cloudy conditions the cloud base information was represented by ones in a set of 47 height
bins at the same heights as the output profile for a total of 86 input nodes. These networks had 86
hidden nodes and 47 output nodes. By adding a set of short cut connections directly from the input
nodes to the output nodes we allowed the cloud base information to directly affect the correspond-
ing output profile altitude. For cloud liquid, networks with only zenith brightness temperatures
were used, including 62 input, 62 hidden and 47 output nodes. Their performance retrieving cloud
liquid was equal to the networks with all 36 brightness temperatures, confirming our eigenvalue
analysis that showed both data sets contained four independent measurements.
8
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5.4. Bayesian Maximum Probability Method

The Bayesian algorithm was developed at the Jet Propulsion Laboratory (JPL) primarily for
calibration of the wet tropospheric path delay during radio astronomy measurements such as the
planned Gravitational Wave Search Experiment using the NASA Cassini spacecraft. Simulations
at JPL demonstrated the superiority of the Bayesian inversion methods over linear regression for
the precise monitoring of path delay variations using microwave radiometers [Keihm and Marsh,
1996].

The model based algorithm uses Bayes’ rule to estimate the most probable value P of the state
vector, a (e.g., vapor densities), given an observable vector, y, which consists of the brightness
temperature measurements and surface meteorology data:

P(a|y) = P(y|a)P(a)/P(y) (6)

where Gaussian statistics are assumed. The state vector, which defines the temperature and
vapor density profiles over a vertical grid, is represented as a Karhunen-Loeve expansion, using
eigenvectors derived from the a priori covariance of the state vector a. The state vector covari-
ance matrix is calculated from a representative radiosonde data archive. An advantage of the Kar-
hunen-Loeve representation is that it can reduce the number of independent unknowns. If the
eigenvalues of the a priori covariance matrix are ordered by decreasing value, it often happens
that only a fraction are significant; the rest represent noise. The inversion problem then reduces to
estimating a smaller set of variables, the computational burden is reduced, and the accuracy of the
inversion can increase if the elements of the state vector covariance matrix are not well deter-
mined from the radiosonde archive.

In practice, given a set of observables, the state vector is iterated, and the corresponding theo-
retical observables are computed, until the “most probable” (maximization of equation a
profile solution is obtained. In qualitative terms, the “most probable” profile solution is that w
minimizes the residuals between measured and computed observables while best confor
the constraints of the a priori statistics.

6. Performance Comparisons of the Retrieval Methods

Ten years of RAOBs including more than 6,000 soundings from Denver, Colorado, No
and Oklahoma City, Oklahoma, and West Palm Beach, Florida, were used for training sets
three sites were chosen because they represent a broad range of climatologies, and the
broad test of the retrieval methods. The subsequent three years of about 2,000 RAOB so
were used as a test or verification set. Neural networking was applied to all three sites 
three profile types. The Bayesian method was applied to water vapor profiles for Denve
cases. The Han and Westwater statistical regression and Newton iterative method were ap
Oklahoma all weather temperature and water vapor profiles. For simplicity, 12 frequenc
cover all types of profiles in clear and cloudy conditions were selected from the frequency
plements (22.035, 22.235, 22.635, 23.835, 29.235, 51.760, 52.280, 54.400, 54.940, 
56.660, and 58.800 GHz) calculated from the eigenvalue analysis in Section 3. The ra
transfer model of NOAA [Schroeder and Westwater, 1992] was used to calculate brightness te
peratures at the 12 frequencies and 3 elevation angles. These brightness temperatures plu
9
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temperature, pressure and relative humidity, and up to two cloud base heights were the available
observables for the retrieval methods. The root mean square (rms) gaussian errors used to corrupt
the observables were 0.5 K for brightness temperatures and surface temperature, 3 mb for surface
pressure, 1% for surface relative humidity and 100 m for cloud base data. We later determined
that ceilometers are accurate to approximately 10 m.

Year round retrievals were utilized in all cases to conserve computing time. Had the retrievals
been binned into seasons or months, we would expect some improvement in the rms retrieval
errors and in the individual profiles.

The rms errors of temperature, water vapor, and liquid water profiles at Norman Oklahoma
using various retrieval methods are shown in Figure 3. The standard deviation of each parameter
as measured by the RAOBs is plotted. The rms error relative to this standard deviation indicates
how much the profile is improved over an a priori mean profile. The ensemble average profile is
also plotted to show fractional errors in the retrieved values. The retrievals were based on all sea-
son values; a better result (lower rms errors) would have been obtained if they had been binned
into seasons or months.

For temperature retrievals, the performance of the various algorithms is comparable. Excel-
lent retrieval performance is generally found for profiles without inversions and profiles with
ground based inversions. Elevated inversions at the 0.5 km level or higher are generally smoothed
in the algorithm solutions. Retrieval error rms values generally range from 1 to 2 K for the 1 to 5
km height interval simulations at the three sites. Relative to the inherent variability of tempera-
ture, the tested observational system typically provides a factor of 4 to 6 improvement in estima-
tion accuracy over the 1 to 5 km range. An exception to this relative performance improvement is
found in the West Palm Beach temperature retrievals above 3 km, which is due to the low inherent
variability of temperatures at this site. The temperature retrieval performance degrades only
slightly for cloudy conditions, compared to clear conditions. The most significant differences
between cloudy and clear are found for the Oklahoma sites. 

The various water vapor profiling algorithm performances were also comparable. However,
comparisons of integrated vapor retrievals for the Denver clear cases revealed large reductions in
retrieval error for the Bayesian algorithm relative to the statistical technique. The result suggests
that the nonlinear iterative methods may produce significant improvements in vapor profile
retrievals, relative to statistical algorithms, when retrieved vapor densities are averaged over
coarser height resolution elements. This result warrants further evaluation. 

For the high resolution grid spacing used in the present evaluation, vapor density retrieval

accuracies better than 1 g/m3 were generally obtained at all sites and altitudes. Drier sites (such as

Denver) exhibit approximately 0.6 g/m3 errors or less at all altitudes. Relative to the inherent vari-
ability at each site, the simulated retrievals showed approximately five times improvement for
Denver and Norman and 2 to 3 times improvement for the West Palm Beach simulations over the
0 to 3 km height range where most of the water vapor resides. Only slight degradation in retrieval
accuracy occurred for cloudy conditions. Elevated vertical structure on scales of 1 km is generally
smoothed in water vapor profile retrievals, consistent with expectations based on the eigenvalue
analysis. 
10



Radio Science, 33, 393-404, 1998

on the

Figure 3. Examples of neural network, Newtonian, and statistical regression retrieved profiles for
cloudy radiosonde data sets from Norman, Oklahoma. Typical “good” results are shown 
left, “poorer” results are shown on the right.
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Figure 4. Examples of neural network, Newtonian, and statistical regression retrieved profiles for
cloudy radiosonde data sets from Norman, Oklahoma. Typical “good” results are shown 
left, “poorer” results are shown on the right.
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Figure 5. Examples of neural network, Newtonian, and statistical regression retrieved profiles for
clear radiosonde data sets from Norman, Oklahoma.
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The error of the neural network retrieved vapor density error at the surface improved from 0.4

g/m3 to 0.3 g/m3 for Oklahoma with surface relative humidity (RH) error improved from 2% to

1%. For a perfectly trained neural network we would expect about 0.15 to 0.20 g/m3 error for 1%

RH measurement error for Oklahoma City average surface absolute humidity of 5 to 6 g/m3. 

Cloud liquid profile improvements are not as dramatic in Figure 3, but this is due in part to the
structure of clouds. Because we are determining the error at each altitude, slight altitude offsets in
profile features between the actual and retrieved profiles can induce large errors when the
retrieved parameter is changing rapidly with altitude. This is especially true of highly layered pro-
files such as cloud liquid water where the densities can change abruptly with altitude at the cloud
margins. Additionally, the cloud bases were binned into 250 m intervals. The cloud margins there-
fore have an uncertainty of several hundred meters due to this deficiency in the retrieval method.
The rms error evaluations are therefore not highly representative of ability to retrieve layered
cloud structure. We have therefore included several individual profile retrievals in Figure 4 for a
subjective demonstration and comparison of retrieval capability.

7. Conclusions

We conclude from our analysis that reasonably accurate atmospheric temperature, water vapor
and liquid water profiles can be obtained from microwave radiometers and ceilometers data using
a variety of mathematical retrieval methods. We are currently developing a profiling radiometer
with these capabilities.
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